
G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) is 
a stand-alone power analysis program for many statistical 
tests commonly used in the social, behavioral, and bio-
medical sciences. It is available free of charge via the In-
ternet for both Windows and Mac OS X platforms (see the 
Concluding Remarks section for details). In this article, we 
present extensions and improvements of G*Power 3 in the 
domain of correlation and regression analyses. G*Power 
now covers (1) one-sample correlation tests based on the 
tetrachoric correlation model, in addition to the bivari-
ate normal and point biserial models already available in 
G*Power 3, (2) statistical tests comparing both dependent 
and independent Pearson correlations, and statistical tests 
for (3) simple linear regression coefficients, (4) multiple 
linear regression coefficients for both the fixed- and 
random-predictors models, (5) logistic regression coef-
ficients, and (6) Poisson regression coefficients. Thus, 
in addition to the generic power analysis procedures for 
the z, t, F, χ2, and binomial tests, and those for tests of 
means, mean vectors, variances, and proportions that have 
already been available in G*Power 3 (Faul et al., 2007), 
the new version, G*Power 3.1, now includes statistical 
power analyses for six correlation and nine regression test 
problems, as summarized in Table 1.

As usual in G*Power 3, five types of power analysis are 
available for each of the newly available tests (for more 
thorough discussions of these types of power analyses, see 
Erdfelder, Faul, Buchner, & Cüpper, in press; Faul et al., 
2007):

1. A priori analysis (see Bredenkamp, 1969; Cohen, 
1988). The necessary sample size is computed as a func-
tion of user-specified values for the required significance 
level α, the desired statistical power 12β, and the to-be-
detected population effect size.

2. Compromise analysis (see Erdfelder, 1984). The sta-
tistical decision criterion (“critical value”) and the asso-
ciated α and β values are computed as a function of the 
desired error probability ratio β/α, the sample size, and 
the population effect size.

3. Criterion analysis (see Cohen, 1988; Faul et al., 
2007). The required significance level α is computed as 
a function of power, sample size, and population effect 
size.

4. Post hoc analysis (see Cohen, 1988). Statistical power 
12β is computed as a function of significance level α, 
sample size, and population effect size.

5. Sensitivity analysis (see Cohen, 1988; Erdfelder, 
Faul, & Buchner, 2005). The required population effect 
size is computed as a function of significance level α, sta-
tistical power 12β, and sample size.

As already detailed and illustrated by Faul et al. (2007), 
G*Power provides for both numerical and graphical out-
put options. In addition, any of four parameters—α, 12β, 
sample size, and effect size—can be plotted as a function 
of each of the other three, controlling for the values of the 
remaining two parameters.

Below, we briefly describe the scope, the statistical back-
ground, and the handling of the correlation and regression 

 1149 © 2009 The Psychonomic Society, Inc.

Statistical power analyses using G*Power 3.1: 
Tests for correlation and regression analyses

Franz Faul
Christian-Albrechts-Universität, Kiel, Germany

Edgar ErdFEldEr
Universität Mannheim, Mannheim, Germany

and

axEl BuchnEr and alBErt-gEorg lang
Heinrich-Heine-Universität, Düsseldorf, Germany

G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improve-
ments of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation 
and regression analyses. In the new version, we have added procedures to analyze the power of tests based on 
(1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regres-
sion, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson 
regression. We describe these new features and provide a brief introduction to their scope and handling.

Behavior Research Methods
2009, 41 (4), 1149-1160
doi:10.3758/BRM.41.4.1149

E. Erdfelder, erdfelder@psychologie.uni-mannheim.de



1150    Faul, ErdFEldEr, BuchnEr, and lang

have not been defined for tetrachoric correlations. How-
ever, Cohen’s (1988) conventions for correlations in the 
framework of the bivariate normal model may serve as 
rough reference points.

Options. Clicking on the “Options” button opens a 
window in which users may choose between the exact ap-
proach of Brown and Benedetti (1977) (default option) or 
an approximation suggested by Bonett and Price (2005).

Input and output parameters. Irrespective of the 
method chosen in the options window, the power of the tet-
rachoric correlation z test depends not only on the values of 
ρ under H0 and H1 but also on the marginal distributions of 
X and Y. For post hoc power analyses, one therefore needs 
to provide the following input in the lower left field of the 
main window: The number of tails of the test (“Tail(s)”: 
one vs. two), the tetrachoric correlation under H1 (“H1 corr 
ρ”), the α error probability, the “Total sample size” N, the 
tetrachoric correlation under H0 (“H0 corr ρ”), and the 
marginal probabilities of X 5 1 (“Marginal prob x”) and 
Y 5 1 (“Marginal prob y”)—that is, the proportions of val-
ues exceeding the two criteria used for dichotomization. 
The output parameters include the “Critical z” required 
for deciding between H0 and H1 and the “Power (12β err 
prob).” In addition, critical values for the sample tetra-
choric correlation r (“Critical r upr” and “Critical r lwr”) 
and the standard error se(r) of r (“Std err r”) under H0 are 
also provided. Hence, if the Wald z statistic W 5 (r 2 ρ0)/
se(r) is unavailable, G*Power users can base their statisti-
cal decision on the sample tetrachoric r directly. For a two-
tailed test, H0 is retained whenever r is not less than “Criti-
cal r lwr” and not larger than “Critical r upr”; otherwise H0 
is rejected. For one-tailed tests, in contrast, “Critical r lwr” 
and “Critical r upr” are identical; H0 is rejected if and only 
if r exceeds this critical value.

Illustrative example. Bonett and Price (2005, Exam-
ple 1) reported the following “yes” (5 1) and “no” (5 2) 

power analysis procedures that are new in G*Power 3.1. 
Further technical details about the tests described here, 
as well as information on those tests in Table 1 that were 
already available in the previous version of G*Power, can 
be found on the G*Power Web site (see the Concluding 
Remarks section). We describe the new tests in the order 
shown in Table 1 (omitting the procedures previously de-
scribed by Faul et al., 2007), which corresponds to their 
order in the “Tests  Correlation and regression” drop-
down menu of G*Power 3.1 (see Figure 1).

1. The Tetrachoric Correlation Model
The “Correlation: Tetrachoric model” procedure refers 

to samples of two dichotomous random variables X and Y 
as typically represented by 2 3 2 contingency tables. The 
tetrachoric correlation model is based on the assumption 
that these variables arise from dichotomizing each of two 
standardized continuous random variables following a bi-
variate normal distribution with correlation ρ in the under-
lying population. This latent correlation ρ is called the tet-
rachoric correlation. G*Power 3.1 provides power analysis 
procedures for tests of H0: ρ 5 ρ0 against H1: ρ  ρ0 (or 
the corresponding one-tailed hypotheses) based on (1) a 
precise method developed by Brown and Benedetti (1977) 
and (2) an approximation suggested by Bonett and Price 
(2005). The procedure refers to the Wald z statistic W 5 
(r 2 ρ0)/se0(r), where se0(r) is the standard error of the 
sample tetrachoric correlation r under H0: ρ 5 ρ0. W fol-
lows a standard normal distribution under H0.

Effect size measure. The tetrachoric correlation under 
H1, ρ1, serves as an effect size measure. Using the effect 
size drawer (i.e., a subordinate window that slides out 
from the main window after clicking on the “Determine” 
button), it can be calculated from the four probabilities of 
the 2 3 2 contingency tables that define the joint distribu-
tion of X and Y. To our knowledge, effect size conventions 

Table 1 
Summary of the Correlation and  

Regression Test Problems Covered by G*Power 3.1

Correlation Problems Referring to One Correlation
Comparison of a correlation ρ with a constant ρ0 (bivariate normal model)
Comparison of a correlation ρ with 0 (point biserial model)
Comparison of a correlation ρ with a constant ρ0 (tetrachoric correlation model)

Correlation Problems Referring to Two Correlations
Comparison of two dependent correlations ρjk and ρjh (common index)
Comparison of two dependent correlations ρjk and ρhm (no common index)
Comparison of two independent correlations ρ1 and ρ2 (two samples)

Linear Regression Problems, One Predictor (Simple Linear Regression)
Comparison of a slope b with a constant b0
Comparison of two independent intercepts a1 and a2 (two samples)
Comparison of two independent slopes b1 and b2 (two samples)

Linear Regression Problems, Several Predictors (Multiple Linear Regression)
Deviation of a squared multiple correlation ρ2 from zero (F test, fixed model)
Deviation of a subset of linear regression coefficients from zero (F test, fixed model)
Deviation of a single linear regression coefficient bj from zero (t test, fixed model)
Deviation of a squared multiple correlation ρ2 from constant (random model)

Generalized Linear Regression Problems
Logistic regression
Poisson regression
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correlation coefficient estimated from the data) as “H1 
corr ρ” and press “Calculate.” Using the exact calculation 
method, this results in a sample tetrachoric correlation 
r 5 .334 and marginal proportions px 5 .602 and py 5 
.582. We then click on “Calculate and transfer to main 
window” in the effect size drawer. This copies the calcu-
lated parameters to the corresponding input fields in the 
main window.

For a replication study, say we want to know the sample 
size required for detecting deviations from H0: ρ 5 0 con-
sistent with the above H1 scenario using a one-tailed test 

answer frequencies of 930 respondents to two questions 
in a personality inventory: f11 5 203, f12 5 186, f21 5 
167, f22 5 374. The option “From C.I. calculated from 
observed freq” in the effect size drawer offers the possi-
bility to use the (12α) confidence interval for the sample 
tetrachoric correlation r as a guideline for the choice of 
the correlation ρ under H1. To use this option, we insert 
the observed frequencies in the corresponding fields. If 
we assume, for example, that the population tetrachoric 
correlation under H1 matches the sample tetrachoric cor-
relation r, we should choose the center of the C.I. (i.e., the 

Figure 1. The main window of G*Power, showing the contents of the “Tests  Correlation and regression” drop-down menu.
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.17 with visuospatial working memory (VWM) and au-
ditory working memory (AWM), respectively. The cor-
relation of the two working memory measures was 
r(VWM, AWM) 5 .17. Assume we would like to know 
whether VWM is more strongly correlated with age 
than AWM in the underlying population. In other words, 
H0: ρ(Age, VWM) # ρ(Age, AWM) is tested against the 
one-tailed H1: ρ(Age, VWM) . ρ(Age, AWM). Assum-
ing that the true population correlations correspond to the 
results reported by Tsujimoto et al., what is the sample 
size required to detect such a correlation difference with 
a power of 12β 5 .95 and α 5 .05? To find the answer, 
we choose the a priori type of power analysis along 
with “Correlations: Two dependent Pearson r’s (com-
mon index)” and insert the above parameters (ρac 5 .27, 
ρab 5 .17, ρbc 5 .17) in the corresponding input fields. 
Clicking on “Calculate” provides us with N 5 1,663 as 
the required sample size. Note that this N would drop to 
N 5 408 if we assumed ρ(VWM, AWM) 5 .80 rather than 
ρ(VWM, AWM) 5 .17, other parameters being equal. Ob-
viously, the third correlation ρbc has a strong impact on 
statistical power, although it does not affect whether H0 or 
H1 holds in the underlying population.

2.2. Comparison of Two Dependent  
Correlations ρab and ρcd (No Common Index)

The “Correlations: Two dependent Pearson r’s (no com-
mon index)” procedure is very similar to the procedure 
described in the preceding section. The single difference is 
that H0: ρab 5 ρcd is now contrasted against H1: ρab  ρcd; 
that is, the two dependent correlations here do not share 
a common index. G*Power’s power analysis procedures 
for this scenario refer to Steiger’s (1980, Equation 12) 
Z2* test statistic. As with Z1*, which is actually a special 
case of Z2*, the Z2* statistic is asymptotically z distributed 
under H0 given a multivariate normal distribution of the 
four random variables Xa, Xb, Xc, and Xd involved in ρab 
and ρcd (see also Dunn & Clark, 1969).

Effect size measure. The effect size specification is 
identical to that for “Correlations: Two dependent Pearson 
r’s (common index),” except that all six pairwise correla-
tions of the random variables Xa, Xb, Xc, and Xd under H1 
need to be specified here. As a consequence, ρac, ρad, ρbc, 
and ρbd are required as input parameters in addition to ρab 
and ρcd.

Input and output parameters. By implication, 
the input parameters include “Corr ρ_ac,” “Corr ρ_ad,” 
“Corr ρ_bc,” and “Corr ρ_bd” in addition to the correla-
tions “H1 corr ρ_cd” and “H0 corr ρ_ab” to which the 
hypotheses refer. There are no other differences from the 
procedure described in the previous section.

Illustrative example. Nosek and Smyth (2007) re-
ported a multitrait–multimethod validation using two 
attitude measurement methods, the Implicit Association 
Test (IAT) and self-report (SR). IAT and SR measures 
of attitudes toward Democrats versus Republicans (DR) 
were correlated at r(IAT-DR, SR-DR) 5 .51 5 rcd. In 
contrast, when measuring attitudes toward whites versus 
blacks (WB), the correlation between both methods was 
only r(IAT-WB, SR-WB) 5 .12 5 rab, probably because 

and a power (12β) 5 .95, given α 5 .05. If we choose the 
a priori type of power analysis and insert the correspond-
ing input parameters, clicking on “Calculate” provides 
us with the result “Total sample size” 5 229, along with 
“Critical z” 5 1.644854 for the z test based on the exact 
method of Brown and Benedetti (1977).

2. Correlation Problems Referring  
to Two Dependent Correlations

This section refers to z tests comparing two dependent 
Pearson correlations that either share (Section 2.1) or do 
not share (Section 2.2) a common index.

2.1. Comparison of Two Dependent  
Correlations ρab and ρac (Common Index)

The “Correlations: Two dependent Pearson r’s (common 
index)” procedure provides power analyses for tests of the 
null hypothesis that two dependent Pearson correlations 
ρab and ρac are identical (H0: ρab 5 ρac). Two correlations 
are dependent if they are defined for the same population. 
Correspondingly, their sample estimates, rab and rac, are 
observed for the same sample of N observations of three 
continuous random variables Xa, Xb, and Xc. The two cor-
relations share a common index because one of the three 
random variables, Xa, is involved in both correlations. 
Assuming that Xa, Xb, and Xc are multivariate normally 
distributed, Steiger’s (1980, Equation 11) Z1* statistic fol-
lows a standard normal distribution under H0 (see also 
Dunn & Clark, 1969). G*Power’s power calculations for 
dependent correlations sharing a common index refer to 
this test.

Effect size measure. To specify the effect size, both 
correlations ρab and ρac are required as input parameters. 
Alternatively, clicking on “Determine” opens the effect 
size drawer, which can be used to compute ρac from ρab 
and Cohen’s (1988, p. 109) effect size measure q, the dif-
ference between the Fisher r-to-z transforms of ρab and 
ρac. Cohen suggested calling effects of sizes q 5 .1, .3, 
and .5 “small,” “medium,” and “large,” respectively. Note, 
however, that Cohen developed his q effect size conven-
tions for comparisons between independent correlations 
in different populations. Depending on the size of the third 
correlation involved, ρbc, a specific value of q can have 
very different meanings, resulting in huge effects on sta-
tistical power (see the example below). As a consequence, 
ρbc is required as a further input parameter.

Input and output parameters. Apart from the num-
ber of “Tail(s)” of the z test, the post hoc power analysis 
procedure requires ρac (i.e., “H1 Corr ρ_ac”), the signifi-
cance level “α err prob,” the “Sample Size” N, and the two 
remaining correlations “H0 Corr ρ_ab” and “Corr ρ_bc” 
as input parameters in the lower left field of the main win-
dow. To the right, the “Critical z” criterion value for the 
z test and the “Power (12β err prob)” are displayed as 
output parameters.

Illustrative example. Tsujimoto, Kuwajima, and 
Sawaguchi (2007, p. 34, Table 2) studied correlations 
between age and several continuous measures of work-
ing memory and executive functioning in children. In 
8- to 9-year-olds, they found age correlations of .27 and 
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is that power can be computed as a function of the slope 
values under H0 and under H1 directly (Dupont & Plum-
mer, 1998).

Effect size measure. The slope b assumed under H1, 
labeled “Slope H1,” is used as the effect size measure. Note 
that the power does not depend only on the difference be-
tween “Slope H1” and “Slope H0,” the latter of which is the 
value b 5 b0 specified by H0. The population standard de-
viations of the predictor and criterion values, “Std dev σ_x” 
and “Std dev σ_y,” are also required. The effect size drawer 
can be used to calculate “Slope H1” from other basic pa-
rameters such as the correlation ρ assumed under H1.

Input and output parameters. The number of 
“Tail(s)” of the t test, “Slope H1,” “α err prob,” “Total 
sample size,” “Slope H0,” and the standard deviations 
(“Std dev σ_x” and “Std dev σ_y”) need to be specified 
as input parameters for a post hoc power analysis. “Power 
(12β err prob)” is displayed as an output parameter, in 
addition to the “Critical t” decision criterion and the pa-
rameters defining the noncentral t distribution implied by 
H1 (the noncentrality parameter δ and the df of the test).

Illustrative example. Assume that we would like to 
assess whether the standardized regression coefficient β 
of a bivariate linear regression of Y on X is consistent with 
H0: β $ .40 or H1: β , .40. Assuming that β 5 .20 actu-
ally holds in the underlying population, how large must the 
sample size N of X–Y pairs be to obtain a power of 12β 5 
.95 given α 5 .05? After choosing “Linear bivariate re-
gression: One group, size of slope” and the a priori type 
of power analysis, we specify the above input parameters, 
making sure that “Tail(s)” 5 one, “Slope H1” 5 .20, “Slope 
H0” 5 .40, and “Std dev σ_x” 5 “Std dev σ_y” 5 1, be-
cause we want to refer to regression coefficients for stan-
dardized variables. Clicking on “Calculate” provides us 
with the result “Total sample size” 5 262.

3.2. Comparison of Two Independent  
Intercepts a1 and a2 (Two Samples)

The “Linear bivariate regression: Two groups, difference 
between intercepts” procedure is based on the assumption 
that the standard bivariate linear model described above 
holds within each of two different populations with the 
same slope b and possibly different intercepts a1 and a2. It 
computes the power of the two-tailed t test of H0: a1 5 a2 
against H1: a1  a2 and for the corresponding one-tailed 
t test, as described in Armitage, Berry, and Matthews 
(2002, ch. 11).

Effect size measure. The absolute value of the differ-
ence between the intercepts, |D intercept| 5 |a1 2 a2|, is 
used as an effect size measure. In addition to |D intercept|, 
the significance level α, and the sizes n1 and n2 of the two 
samples, the power depends on the means and standard 
deviations of the criterion and the predictor variable.

Input and output parameters. The number of 
“Tail(s)” of the t test, the effect size “|D intercept|,” the 
“α err prob,” the sample sizes in both groups, the standard 
deviation of the error variable Eij (“Std dev residual σ”), 
the means (“Mean m_x1,” “Mean m_x2”), and the standard 
deviations (“Std dev σ_x1,” “Std dev σ_x2”) are required 
as input parameters for a “Post hoc” power analysis. The 

SR measures of attitudes toward blacks are more strongly 
biased by social desirability influences. Assuming that 
(1) these correlations correspond to the true population cor-
relations under H1 and (2) the other four between-attitude 
correlations ρ(IAT-WB, IAT-DR), ρ(IAT-WB,  SR-DR), 
ρ(SR-WB, IAT-DR), and ρ(SR-WB, SR-DR) are zero, 
how large must the sample be to make sure that this devia-
tion from H0: ρ(IAT-DR, SR-DR) 5 ρ(IAT-WB, SR-WB) 
is detected with a power of 12β 5 .95 using a one-tailed 
test and α 5 .05? An a priori power analysis for “Corre-
lations: Two dependent Pearson r’s (no common index)” 
computes N 5 114 as the required sample size.

The assumption that the four additional correlations 
are zero is tantamount to assuming that the two correla-
tions under test are statistically independent (thus, the 
procedure in G*Power for independent correlations could 
alternatively have been used). If we instead assume that 
ρ(IAT-WB, IAT-DR) 5 ρac 5 .6 and ρ(SR-WB,  SR-DR) 5 
ρbd 5 .7, we arrive at a considerably lower sample size of 
N 5 56. If our resources were sufficient for recruiting not 
more than N 5 40 participants and we wanted to make 
sure that the “β/α ratio” equals 1 (i.e., balanced error risks 
with α 5 β), a compromise power analysis for the lat-
ter case computes “Critical z” 5 1.385675 as the optimal 
statistical decision criterion, corresponding to α 5 β 5 
.082923.

3. Linear Regression Problems,  
One Predictor (Simple Linear Regression)

This section summarizes power analysis procedures 
addressing regression coefficients in the bivariate linear 
standard model Yi 5 a 1 b·Xi 1 Ei, where Yi and Xi repre-
sent the criterion and the predictor variable, respectively, 
a and b the regression coefficients of interest, and Ei an 
error term that is independently and identically distrib-
uted and follows a normal distribution with expectation 0 
and homogeneous variance σ2 for each observation unit i. 
Section 3.1 describes a one-sample procedure for tests ad-
dressing b, whereas Sections 3.2 and 3.3 refer to hypoth-
eses on differences in a and b between two different un-
derlying populations. Formally, the tests considered here 
are special cases of the multiple linear regression proce-
dures described in Section 4. However, the procedures for 
the special case provide a more convenient interface that 
may be easier to use and interpret if users are interested 
in bivariate regression problems only (see also Dupont & 
Plummer, 1998).

3.1. Comparison of a Slope b With a Constant b0
The “Linear bivariate regression: One group, size of 

slope” procedure computes the power of the t test of 
H0: b 5 b0 against H1: b  b0, where b0 is any real-valued 
constant. Note that this test is equivalent to the standard 
bivariate regression t test of H0: b* 5 0 against H1: b*  0 
if we refer to the modified model Yi

* 5 a 1 b*·Xi 1 Ei, 
with Yi

* :5 Yi 2 b0·Xi (Rindskopf, 1984). Hence, power 
could also be assessed by referring to the standard regres-
sion t test (or global F test) using Y * rather than Y as a 
criterion variable. The main advantage of the “Linear bi-
variate regression: One group, size of slope” procedure 
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of H0: b1 # b2 against H1: b1 . b2, given α 5 .05? To an-
swer this question, we select “Linear bivariate regression: 
Two groups, difference between slopes” along with the 
post hoc type of power analysis. We then provide the ap-
propriate input parameters [“Tail(s)” 5 one, “|D slope|” 5 
.57, “α error prob” 5 .05, “Sample size group 1” 5 
“ Sample size group 2” 5 30, “Std dev. residual σ” 5 .80, 
and “Std dev σ_X1” 5 “Std dev σ_X2” 5 1] and click 
on “ Calculate.” We obtain “Power (12β err prob)” 5 
.860165.

4. Linear Regression Problems, Several 
Predictors (Multiple Linear Regression)

In multiple linear regression, the linear relation between 
a criterion variable Y and m predictors X 5 (X1, . . . , Xm) 
is studied. G*Power 3.1 now provides power analysis pro-
cedures for both the conditional (or fixed-predictors) and 
the unconditional (or random-predictors) models of mul-
tiple regression (Gatsonis & Sampson, 1989; Sampson, 
1974). In the fixed-predictors model underlying previous 
versions of G*Power, the predictors X are assumed to be 
fixed and known. In the random-predictors model, by con-
trast, they are assumed to be random variables with values 
sampled from an underlying multivariate normal distribu-
tion. Whereas the fixed-predictors model is often more 
appropriate in experimental research (where known pre-
dictor values are typically assigned to participants by an 
experimenter), the random-predictors model more closely 
resembles the design of observational studies (where par-
ticipants and their associated predictor values are sam-
pled from an underlying population). The test procedures 
and the maximum likelihood estimates of the regression 
weights are identical for both models. However, the mod-
els differ with respect to statistical power.

Sections 4.1, 4.2, and 4.3 describe procedures related 
to F and t tests in the fixed-predictors model of multiple 
linear regression (cf. Cohen, 1988, ch. 9), whereas Sec-
tion 4.4 describes the procedure for the random-predictors 
model. The procedures for the fixed-predictors model are 
based on the general linear model (GLM), which includes 
the bivariate linear model described in Sections 3.1–3.3 
as a special case (Cohen, Cohen, West, & Aiken, 2003). 
In other words, the following procedures, unlike those 
in the previous section, have the advantage that they are 
not limited to a single predictor variable. However, their 
disadvantage is that effect size specifications cannot be 
made in terms of regression coefficients under H0 and H1 
directly. Rather, variance proportions, or ratios of variance 
proportions, are used to define H0 and H1 (cf. Cohen, 1988, 
ch. 9). For this reason, we decided to include both bivariate 
and multiple linear regression procedures in G*Power 3.1. 
The latter set of procedures is recommended whenever sta-
tistical hypotheses are defined in terms of proportions of 
explained variance or whenever they can easily be trans-
formed into hypotheses referring to such proportions.

4.1. Deviation of a Squared Multiple Correlation  
ρ2 From Zero (Fixed Model)

The “Linear multiple regression: Fixed model, R2 de-
viation from zero” procedure provides power analyses for 

“Power (12β err prob)” is displayed as an output param-
eter in addition to the “Critical t” decision criterion and 
the parameters defining the noncentral t distribution im-
plied by H1 (the noncentrality parameter δ and the df of 
the test).

3.3. Comparison of Two Independent  
Slopes b1 and b2 (Two Samples)

The linear model used in the previous two sections also 
underlies the “Linear bivariate regression: Two groups, dif-
ferences between slopes” procedure. Two independent sam-
ples are assumed to be drawn from two different popula-
tions, each consistent with the model Yij 5 aj 1 bj·Xi 1 Ei, 
where Yij, Xij, and Eij respectively represent the criterion, 
the predictor, and the normally distributed error variable 
for observation unit i in population j. Parameters aj and bj 
denote the regression coefficients in population j, j 5 1, 2. 
The procedure provides power analyses for two-tailed t tests 
of the null hypothesis that the slopes in the two populations 
are equal (H0: b1 5 b2) versus different (H1: b1  b2) and 
for the corresponding one-tailed t test (Armitage et al., 
2002, ch. 11, Equations 11.18–11.20).

Effect size measure. The absolute difference between 
slopes, |D slope| 5 |b1 2 b2|, is used as an effect size mea-
sure. Statistical power depends not only on |D slope|, α, and 
the two sample sizes n1 and n2. Specifically, the standard 
deviations of the error variable Eij (“Std dev residual σ”), 
the predictor variable (“Std dev σ_X”), and the criterion 
variable (“Std dev σ_Y”) in both groups are required to 
fully specify the effect size.

Input and output parameters. The input and output 
parameters are similar to those for the two procedures de-
scribed in Sections 3.1 and 3.2. In addition to |D slope| and 
the standard deviations, the number of “Tail(s)” of the test, 
the “α err prob,” and the two sample sizes are required in 
the Input Parameters fields for the post hoc type of power 
analysis. In the Output Parameters fields, the “Noncen-
trality parameter δ” of the t distribution under H1, the deci-
sion criterion (“Critical t”), the degrees of freedom of the 
t test (“Df ”), and the “Power (12β err prob)” implied by 
the input parameters are provided.

Illustrative application. Perugini, O’Gorman, and 
Prestwich (2007, Study 1) hypothesized that the criterion 
validity of the IAT depends on the degree of self-activation 
in the test situation. To test this hypothesis, they asked 60 
participants to circle certain words while reading a short 
story printed on a sheet of paper. Half of the participants 
were asked to circle the words “the” and “a” (control con-
dition), whereas the remaining 30 participants were asked 
to circle “I,” “me,” “my,” and “myself ” (self-activation 
condition). Subsequently, attitudes toward alcohol versus 
soft drinks were measured using the IAT (predictor X ). 
In addition, actual alcohol consumption rate was assessed 
using the self-report (criterion Y ). Consistent with their 
hypothesis, they found standardized Y–X regression coef-
ficients of β 5 .48 and β 5 2.09 in the self-activation and 
control conditions, respectively. Assuming that (1) these 
coefficients correspond to the actual coefficients under H1 
in the underlying populations and (2) the error standard de-
viation is .80, how large is the power of the one-tailed t test 
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H0: ρ2
Y.X1,...,Xm 5 ρ2

Y.X1,...,Xk (i.e., Set B does not increase the 
proportion of explained variance) versus H1: ρ2

Y.X1,...,Xm . 
ρ2

Y.X1,...,Xk (i.e., Set B increases the proportion of explained 
variance). Note that H0 is tantamount to claiming that all 
m2k regression coefficients of Set B are zero.

As shown by Rindskopf (1984), special F tests can 
also be used to assess various constraints on regression 
coefficients in linear models. For example, if Yi 5 b0 1 
b1·X1i 1 . . . 1 bm·Xmi 1 Ei is the full linear model and 
Yi 5 b0 1 b·X1i 1 . . . 1 b·Xmi 1 Ei is a restricted H0 
model claiming that all m regression coefficients are equal 
(H0: b1 5 b2 5 . . . 5 bm 5 b), we can define a new predic-
tor variable Xi :5 X1i 1 X2i 1 . . . 1 Xmi and consider the 
restricted model Yi 5 b0 1 b·Xi 1 Ei. Because this model 
is equivalent to the H0 model, we can compare ρ2

Y.X1,...,Xm 
and ρ2

Y.X with a special F test to test H0.
Effect size measure. Cohen’s (1988) f 2 is again used 

as an effect size measure. However, here we are interested 
in the proportion of variance explained by predictors from 
Set B only, so that f 2 5 (ρ2

Y.X1,...,Xm 2 ρ2
Y.X1,...,Xk) / (1 2  

ρ2
Y.X1,...,Xm) serves as an effect size measure. The effect size 

drawer can be used to calculate f 2 from the variance ex-
plained by Set B (i.e., ρ2

Y.X1,...,Xm 2 ρ2
Y.X1,...,Xk) and the error 

variance (i.e., 1 2 ρ2
Y.X1,...,Xm). Alternatively, f 2 can also be 

computed as a function of the partial correlation squared 
of Set B predictors (Cohen, 1988, ch. 9).

Cohen (1988) suggested the same effect size conven-
tions as in the case of global F tests (see Section 4.1). 
However, we believe that researchers should reflect the 
fact that a certain effect size, say f 2 5 .15, may have very 
different substantive meanings depending on the propor-
tion of variance explained by Set A (i.e., ρ2

Y.X1,...,Xk).
Input and output parameters. The inputs and out-

puts match those of the “Linear multiple regression: 
Fixed model, R2 deviation from zero” procedure (see Sec-
tion 4.1), with the exception that the “Number of tested 
predictors” :5 m 2 k—that is, the number of predictors in 
Set B—is required as an additional input parameter.

Illustrative example. In Section 3.3, we presented a 
power analysis for differences in regression slopes as 
analyzed by Perugini et al. (2007, Study 1). Multiple 
linear regression provides an alternative method to ad-
dress the same problem. In addition to the self-report of 
alcohol use (criterion Y ) and the IAT attitude measure 
(predictor X ), two additional predictors are required 
for this purpose: a binary dummy variable G represent-
ing the experimental condition (G 5 0, control group; 
G 5 1, self-activation group) and, most importantly, a 
product variable G·X representing the interaction of the 
IAT measure and the experimental conditional. Differ-
ences in Y–X regression slopes in the two groups will 
show up as a significant effect of the G·X interaction in 
a regression model using Y as the criterion and X, G, and 
G·X as m 5 3 predictors.

Given a total of N 5 60 participants (30 in each group), 
α 5 .05, and a medium size f 2 5 .15 of the interaction ef-
fect in the underlying population, how large is the power 
of the special F test assessing the increase in explained 
variance due to the interaction? To answer this question, 
we choose the post hoc power analysis in the “Linear mul-

omnibus (or “global”) F tests of the null hypothesis that 
the squared multiple correlation between a criterion vari-
able Y and a set of m predictor variables X1, X2, . . . , Xm is 
zero in the underlying population (H0: ρ2

Y.X1,...,Xm 5 0) ver-
sus larger than zero (H1: ρ2

Y.X1,...,Xm . 0). Note that the for-
mer hypothesis is equivalent to the hypothesis that all m re-
gression coefficients of the predictors are zero (H0: b1 5 
b2 5 . . . 5 bm 5 0). By implication, the omnibus F test 
can also be used to test fully specified linear models of the 
type Yi 5 b0 1 c1·X1i 1 . . . 1 cm·Xmi 1 Ei, where c1, . . . , 
cm are user-specified real-valued constants defining H0. 
To test this fully specified model, simply define a new 
criterion variable Yi

* :5 Yi 2 c1·X1i 2 . . . 2 cm·Xmi and 
perform a multiple regression of Y * on the m predictors X1 
to Xm. H0 holds if and only if ρ2

Y*.X1,...,Xm 5 0—that is, if all 
 regression coefficients are zero in the transformed regres-
sion equation pertaining to Y * (see Rindskopf, 1984).

Effect size measure. Cohen’s f 2, the ratio of explained 
variance and error variance, serves as the effect size mea-
sure (Cohen, 1988, ch. 9). Using the effect size drawer, f 2 
can be calculated directly from the squared multiple cor-
relation ρ2

Y.X1,...,Xm in the underlying population. For omni-
bus F tests, the relation between f 2 and ρ2

Y.X1,...,Xm is simply 
given by f 2 5 ρ2

Y.X1,...,Xm / (1 2 ρ2
Y.X1,...,Xm). According to 

Cohen (ch. 9), f 2 values of .02, .15, and .35 can be called 
“small,” “medium,” and “large” effects, respectively. Al-
ternatively, one may compute f 2 by specifying a vector 
u of correlations between Y and the predictors Xi along 
with the (m 3 m) matrix B of intercorrelations among the 
predictors. Given u and B, it is easy to derive ρ2

Y.X1,...,Xm 5 
uTB21u and, via the relation between f 2 and ρ2

Y.X1,...,Xm de-
scribed above, also f 2.

Input and output parameters. The post hoc power 
analysis procedure requires the population “Effect size f2,” 
the “α err prob,” the “Total sample size” N, and the “Total 
number of predictors” m in the regression model as input 
parameters. It provides as output parameters the “Non-
centrality parameter λ” of the F distribution under H1, the 
decision criterion (“Critical F”), the degrees of freedom 
(“Numerator df,” “Denominator df ”), and the power of 
the omnibus F test [“Power (12β err prob)”].

Illustrative example. Given three predictor variables 
X1, X2, and X3, presumably correlated to Y with ρ1 5 .3, 
ρ2 5 2.1, and ρ3 5 .7, and with pairwise correlations of 
ρ13 5 .4 and ρ12 5 ρ23 5 0, we first determine the effect 
size f 2. Inserting b 5 (.3, 2.1, .7) and the intercorrelation 
matrix of the predictors in the corresponding input dialog 
in G*Power’s effect size drawer, we find that ρ2

Y.X1,...,Xm 5 .5 
and f 2 5 1. The results of an a priori analysis with this effect 
size reveals that we need a sample size of N 5 22 to achieve 
a power of .95 in a test based on α 5 .05.

4.2. Deviation of a Subset of Linear Regression 
Coefficients From Zero (Fixed Model)

Like the previous procedure, this procedure is based on 
the GLM, but this one considers the case of two Predictor 
Sets A (including X1, . . . , Xk) and B (including Xk11, . . . , 
Xm) that define the full model with m predictors. The 
“Linear multiple regression: Fixed model, R2 increase” 
procedure provides power analyses for the special F test of 
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tively, the three-moment F approximation suggested by 
Lee (1972) can also be used.

In addition to the five types of power analysis and the 
graphic options that G*Power 3.1 supports for any test, 
the program provides several other useful procedures for 
the random-predictors model: (1) It is possible to calculate 
exact confidence intervals and confidence bounds for the 
squared multiple correlation; (2) the critical values of R2 
given in the output may be used in hypothesis testing; and 
(3) the probability density function, the cumulative distri-
bution function, and the quantiles of the sampling distri-
bution of the squared multiple correlation coefficients are 
available via the G*Power calculator.

The implemented procedures provide power analyses 
for tests of the null hypothesis that the population squared 
multiple correlation coefficient ρ2 equals ρ2

0 (H0: ρ2 5 ρ2
0) 

versus a one- or a two-tailed alternative.
Effect size measure. The squared population correla-

tion coefficient ρ2 under the alternative hypothesis (H1 ρ2) 
serves as an effect size measure. To fully specify the ef-
fect size, the squared multiple correlation under the null 
hypothesis (H0 ρ2) is also needed.

The effect size drawer offers two ways to calculate the 
effect size ρ2. First, it is possible to choose a certain per-
centile of the (12α) confidence interval calculated for an 
observed R2 as H1 ρ2. Alternatively, H1 ρ2 can be obtained 
by specifying a vector u of correlations between criterion 
Y and predictors Xi and the (m 3 m) matrix B of correla-
tions among the predictors. By definition, ρ2 5 uTB21u.

Input and output parameters. The post hoc power 
analysis procedure requires the type of test (“Tail(s)”: one 
vs. two), the population ρ2 under H1, the population ρ2 
under H0, the “α error prob,” the “Total sample size” N, 
and the “Number of predictors” m in the regression model 
as input parameters. It provides the “Lower critical R2,” 
the “Upper critical R2,” and the power of the test “Power 
(12β err prob)” as output. For a two-tailed test, H0 is re-
tained whenever the sample R2 lies in the interval defined 
by “Lower critical R2” and “Upper critical R2”; otherwise, 
H0 is rejected. For one-tailed tests, in contrast, “Lower 
critical R2” and “Upper critical R2” are identical; H0 is 
rejected if and only if R2 exceeds this critical value.

Illustrative examples. In Section 4.1, we presented 
a power analysis for a three-predictor example using the 
fixed-predictors model. Using the same input procedure 
in the effect size drawer (opened by pressing “Insert/edit 
matrix” in the “From predictor correlations” section) de-
scribed in Section 4.1, we again find “H1 ρ2” 5 .5. How-
ever, the result of the same a priori analysis (power 5 .95, 
α 5 .05, 3 predictors) previously computed for the fixed 
model shows that we now need a sample size of at least 
N 5 26 for the random model, instead of only the N 5 22 
previously found for the fixed model. This difference il-
lustrates the fact that sample sizes required for the random-
 predictors model are always slightly larger than those re-
quired for the corresponding fixed-predictors model.

As a further example, we use the “From confidence in-
terval” procedure in the effect size drawer to determine 
the effect size based on the results of a pilot study. We 
insert the values from a previous study (“Total sample 

tiple regression: Fixed model, R2 increase” procedure. In 
addition to “Effect size f2” 5 .15, “α err prob” 5 .05, and 
“Total sample size” 5 60, we specify “Number of tested 
predictors” 5 1 and “Total number of predictors” 5 3 
as input parameters, because we have m 5 3 predictors 
in the full model and only one of these predictors cap-
tures the effect of interest—namely, the interaction ef-
fect. Clicking on “Calculate” provides us with the result 
“Power (12β err prob)” 5 .838477.

4.3. Deviation of a Single Linear Regression 
Coefficient bj From Zero (t Test, Fixed Model)

Special F tests assessing effects of a single predic-
tor Xj in multiple regression models (hence, numerator 
df 5 1) are equivalent to two-tailed t tests of H0: bj 5 0. 
The “Linear multiple regression: Fixed model, single re-
gression coefficient” procedure has been designed for this 
situation. The main reason for including this procedure 
in G*Power 3.1 is that t tests for single regression coef-
ficients can take the form of one-tailed tests of, for ex-
ample, H0: bj # 0 versus H1: bj . 0. Power analyses for 
one-tailed tests can be done most conveniently with the 
“Linear multiple regression: Fixed model, single regres-
sion coefficient” t test procedure.

Effect size measures, input and output param-
eters. Because two-tailed regression t tests are special 
cases of the special F tests described in Section 4.2, the 
effect size measure and the input and output parameters 
are largely the same for both procedures. One exception is 
that “Numerator df ” is not required as an input parameter 
for t tests. Also, the number of “Tail(s)” of the test (one 
vs. two) is required as an additional input parameter in the 
t test procedure.

Illustrative application. See the example described in 
Section 4.2. For the reasons outlined above, we would ob-
tain the same power results if we were to analyze the same 
input parameters using the “Linear multiple regression: 
Fixed model, single regression coefficient” procedure 
with “Tail(s)” 5 two. In contrast, if we were to choose 
“Tail(s)” 5 one and keep the other parameters unchanged, 
the power would increase to .906347.

4.4. Deviation of Multiple Correlation  
Squared ρ2 From Constant (Random Model)

The random-predictors model of multiple linear regres-
sion is based on the assumption that (Y, X1, . . . , Xm) are 
random variables with a joint multivariate normal distri-
bution. Sampson (1974) showed that choice of the fixed 
or the random model has no bearing on the test of sig-
nificance or on the estimation of the regression weights. 
However, the choice of model affects the power of the 
test. Several programs exist that can be used to assess 
the power for random-model tests (e.g., Dunlap, Xin, & 
Myers, 2004; Mendoza & Stafford, 2001; Shieh & Kung, 
2007; Steiger & Fouladi, 1992). However, these programs 
either rely on other software packages (Mathematica, 
Excel) or provide only a rather inflexible user interface. 
The procedures implemented in G*Power use the exact 
sampling distribution of the squared multiple correlation 
coefficient (Benton & Krishnamoorthy, 2003). Alterna-
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5.1. Logistic Regression
Logistic regression models address the relationship 

between a binary dependent variable (or criterion) Y and 
one or more independent variables (or predictors) Xj, 
with discrete or continuous probability distributions. 
In contrast to linear regression models, the logit trans-
form of Y, rather than Y itself, serves as the criterion to 
be predicted by a linear combination of the independent 
variables. More precisely, if y 5 1 and y 5 0 denote the 
two possible values of Y, with probabilities p( y 5 1) and 
p( y 5 0), respectively, so that p( y 5 1) 1 p( y 5 0) 5 1, 
then logit(Y ) :5 ln[ p( y 5 1) / p( y 5 0)] is modeled as 
logit(Y ) 5 β0 1 β1·X1 1 . . . 1 βm·Xm. A logistic re-
gression model is called simple if m 5 1. If m . 1, we 
have a multiple logistic regression model. The imple-
mented procedures provide power  analyses for the Wald 
test z 5 β̂j / se( β̂j) assessing the effect of a specific pre-
dictor Xj (e.g., H0: βj 5 0 vs. H1: βj  0, or H0: βj # 0 
vs. H1: βj . 0) in both simple and multiple logistic re-
gression models. In addition, the procedure of Lyles et al. 
(2007) also supports power analyses for likelihood ratio 
tests. In the case of multiple logistic regression models, a 
simple approximation proposed by Hsieh et al. (1998) is 
used: The sample size N is multiplied by (12R2), where 
R2 is the squared multiple correlation coefficient when 
the predictor of interest is regressed on the other predic-
tors. The following paragraphs refer to the simple model 
logit(Y ) 5 β0 1 β1·X.

Effect size measure. Given the conditional probability 
p1 :5 p(Y 5 1 | X 5 1) under H0, we may define the effect 
size either by specifying p2 :5 p(Y 5 1 | X 5 1) under 
H1 or by specifying the odds ratio OR :5 [ p2/(1 2 p2)] /  
[ p1/(1 2 p1)]. The parameters β0 and β1 are related to p1 
and p2 as follows: β0 5 ln[ p1/(1 2 p1)], β1 5 ln[OR]. 
Under H0, p1 5 p2 or OR 5 1.

Input and output parameters. The post hoc type of 
power analysis for the “Logistic regression” procedure 
requires the following input parameters: (1) the num-
ber of “Tail(s)” of the test (one vs. two); (2) “Pr(Y 5 1 | 
X 5 1)” under H0, corresponding to p1; (3) the effect 
size [either “Pr(Y 5 1 | X 5 1)” under H1 or, option-
ally, the “Odds ratio” specifying p2]; (4) the “α err prob”; 
(5) the “Total sample size” N; and (6) the proportion of 
variance of Xj explained by additional predictors in the 
model (“R2 other X”). Finally, because the power of the 
test also depends on the distribution of the predictor X, the 
“X distribution” and its parameters need to be specified. 
Users may choose between six predefined distributions 
(binomial, exponential, log-normal, normal, Poisson, or 
uniform) or select a manual input mode. Depending on 
this selection, additional parameters (corresponding to the 
distribution parameters or, in the manual mode, the vari-
ances v0 and v1 of β1 under H0 and H1, respectively) must 
be specified. In the manual mode, sensitivity analyses 
are not possible. After clicking “Calculate,” the statistical 
decision criterion (“Critical z” in the large-sample pro-
cedures, “Noncentrality parameter λ,” “Critical χ2,” and 
“df ” in the enumeration approach) and the power of the 
test [“Power (12β err prob)”] are displayed in the Output 
Parameters fields.

size” 5 50, “Number of predictors” 5 5, and “Observed 
R2” 5 .3), choose “Confidence level (12α)” 5 .95, and 
choose the center of the confidence interval as “H1 ρ2” 
[“Rel. C.I. pos to use (05left,15right)” 5 .5]. Pressing 
“Calculate” produces the two-sided interval (.0337, .4603) 
and the two one-sided intervals (0, .4245) and (.0589, 1), 
thus confirming the values computed by Shieh and Kung 
(2007, p. 733). In addition, “H1 ρ2” is set to .2470214, 
the center of the interval. Given this value, an a priori 
analysis of the one-sided test of H0: ρ2 5 0 using α 5 .05 
shows that we need a sample size of at least 71 to achieve 
a power of .95. The output also provides “Upper critical 
R2” 5 .153427. Thus, if in our new study we found R2 to 
be larger than this value, the result here implies that the 
test would be significant at the .05 α level.

Suppose we were to find a value of R2 5 .19. Then 
we could use the G*Power calculator to compute the p 
value of the test statistic: The syntax for the cumulative 
distribution function of the sampling distribution of R2 
is “mr2cdf(R2, ρ2, m11, N)”. Thus, in our case, we need 
to insert “12mr2cdf(0.19, 0, 511, 71)” in the calculator. 
Pressing “Calculate” shows that p 5 .0156.

5. Generalized Linear Regression Problems
G*Power 3.1 includes power procedures for logistic and 

Poisson regression models in which the predictor variable 
under test may have one of six different predefined dis-
tributions (binary, exponential, log-normal, normal, Pois-
son, and uniform). In each case, users can choose between 
the enumeration approach proposed by Lyles, Lin, and 
Williamson (2007), which allows power calculations for 
Wald and likelihood ratio tests, and a large-sample ap-
proximation of the Wald test based on the work of Demi-
denko (2007, 2008) and Whittemore (1981). To allow for 
comparisons with published results, we also implemented 
simple but less accurate power routines that are in wide-
spread use (i.e., the procedures of Hsieh, Bloch, & Lar-
sen, 1998, and of Signorini, 1991, for logistic and Poisson 
regressions, respectively). Problems with Whittemore’s 
and Signorini’s procedures have already been discussed by 
Shieh (2001) and need not be reiterated here.

The enumeration procedure of Lyles et al. (2007) 
is conceptually simple and provides a rather direct, 
simulation- like approach to power analysis. Its main 
disadvantage is that it is rather slow and requires much 
computer memory for analyses with large sample sizes. 
The recommended practice is therefore to begin with the 
large-sample approximation and to use the enumeration 
approach mainly to validate the results (if the sample size 
is not too large).

Demidenko (2008, pp. 37f) discussed the relative mer-
its of power calculations based on Wald and likelihood 
ratio tests. A comparison of both approaches using the 
Lyles et al. (2007) enumeration procedure indicated that 
in most cases the difference in calculated power is small. 
In cases in which the results deviated, the simulated power 
was slightly higher for the likelihood ratio test than for 
the Wald test procedure, which tended to underestimate 
the true power, and the likelihood ratio procedure also ap-
peared to be more accurate.
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criterion Y ) and one or more independent variables (i.e., 
the predictors Xj, j 5 1, . . . , m). For a count variable Y 
indexing the number Y 5 y of events of a certain type in a 
fixed amount of time, a Poisson distribution model is often 
reasonable (Hays, 1972). Poisson distributions are defined 
by a single parameter λ, the so-called intensity of the Pois-
son process. The larger the λ, the larger the number of crit-
ical events per time, as indexed by Y. Poisson regression 
models are based on the assumption that the logarithm of λ 
is a linear combination of m predictors Xj, j 5 1, . . . , m. In 
other words, ln(λ) 5 β0 1 β1·X1 1 . . . 1 βm·Xm, with βj 
measuring the “effect” of predictor Xj on Y.

The procedures currently implemented in G*Power 
provide power analyses for the Wald test z 5 β̂j / se( β̂j), 
which assesses the effect of a specific predictor Xj (e.g., 
H0: βj 5 0 vs. H1: βj  0 or H0: βj # 0 vs. H1: βj . 0) 
in both simple and multiple Poisson regression models. 
In addition, the procedure of Lyles et al. (2007) provides 
power analyses for likelihood ratio tests. In the case of 
multiple Poisson regression models, a simple approxima-
tion proposed by Hsieh et al. (1998) is used: The sample 
size N is multiplied by (12R2), where R2 is the squared 
multiple correlation coefficient when the predictor of 
interest is regressed on the other predictors. In the fol-
lowing discussion, we assume the simple model ln(λ) 5 
β0 1 β1X.

Effect size measure. The ratio R 5 λ(H1)/λ(H0) of 
the intensities of the Poisson processes under H1 and H0, 
given X1 5 1, is used as an effect size measure. Under 
H0, R 5 1. Under H1, in contrast, R 5 exp(β1).

Input and output parameters. In addition to 
“Exp(β1),” the number of “Tail(s)” of the test, the “α err 
prob,” and the “Total sample size,” the following input pa-
rameters are required for post hoc power analysis tests in 
Poisson regression: (1) The intensity λ 5 exp(β0) assumed 
under H0 [“Base rate exp(β0)”], (2) the mean exposure 
time during which the Y events are counted (“Mean expo-
sure”), and (3) “R2 other X,” a factor intended to approxi-
mate the influence of additional predictors Xk (if any) on 
the predictor of interest. The meaning of the latter fac-
tor is identical to the correction factor proposed by Hsieh 
et al. (1998, Equation 2) for multiple logistic regression 
(see Section 5.1), so that “R2 other X” is the proportion 
of the variance of X explained by the other predictors. Fi-
nally, because the power of the test also depends on the 
distribution of the predictor X, the “X distribution” and its 
parameters need to be specified. Users may choose from 
six predefined distributions (binomial, exponential, log-
normal, normal, Poisson, or uniform) or select a manual 
input mode. Depending on this choice, additional param-
eters (corresponding to distribution parameters or, in the 
manual mode, the variances v0 and v1 of β1 under H0 and 
H1, respectively) must be specified. In the manual mode, 
sensitivity analyses are not possible.

In post hoc power analyses, the statistical decision 
criterion (“Critical z” in the large-sample procedures, 
“Noncentrality parameter λ,” “Critical χ2,” and “df ” 
in the enumeration approach) and the power of the test 
[“Power (12β err prob)”] are displayed in the Output Pa-
rameters fields.

Illustrative examples. Using multiple logistic regres-
sion, Friese, Bluemke, and Wänke (2007) assessed the ef-
fects of (1) the intention to vote for a specific political 
party x (5 predictor X1) and (2) the attitude toward party x 
as measured with the IAT (5 predictor X2) on actual vot-
ing behavior in a political election (5 criterion Y ). Both 
X1 and Y are binary variables taking on the value 1 if a 
participant intends to vote for x or has actually voted for x, 
respectively, and the value 0 otherwise. In contrast, X2 is 
a continuous implicit attitude measure derived from IAT 
response time data.

Given the fact that Friese et al. (2007) were able to 
analyze data for N 5 1,386 participants, what would 
be a reasonable statistical decision criterion (criti-
cal z value) to detect effects of size p1 5 .30 and p2 5 
.70 (so that OR 5 .7/.3 · .7/.3 5 5.44) for predictor X1, 
given a base rate B 5 .10 for the intention to vote for 
the Green party, a two-tailed z test, and balanced α and 
β error risks so that q 5 β/α 5 1? A compromise power 
analysis helps find the answer to this question. In the ef-
fect size drawer, we enter “Pr(Y 5 1 | X 5 1) H1” 5 .70, 
“Pr(Y 5 1 | X 5 1) H0” 5 .30. Clicking “Calcu-
late and transfer to main window” yields an odds ratio 
of 5.44444 and transfers this value and the value of 
“Pr(Y 5 1 | X 5 1) H0” to the main window. Here we 
specify “Tail(s)” 5 two, “β/α ratio” 5 1, “Total sam-
ple size” 5 1,386, “X distribution” 5 binomial, and 
“x parm π” 5 .1 in the Input Parameters fields. If we as-
sume that the attitude toward the Green party (X2) explains 
40% of the variance of X1, we need “R2 other X” 5 .40 
as an additional input parameter. In the Options dialog 
box, we choose the Demidenko (2007) procedure (without 
variance correction). Clicking on “Calculate” provides us 
with “Critical z” 5 3.454879, corresponding to α 5 β 5 
.00055. Thus, very small α values may be reasonable if the 
sample size, the effect size, or both are very large, as is the 
case in the Friese et al. study.

We now refer to the effect of the attitude toward the 
Green party (i.e., predictor X2, assumed to be standard 
normally distributed). Assuming that a proportion of p1 5 
.10 of the participants with an average attitude toward the 
Greens actually vote for them, whereas a proportion of 
.15 of the participants with an attitude one standard de-
viation above the mean would vote for them [thus, OR 5 
(.15/.85) · (.90/.10) 5 1.588 and b1 5 ln(1.588) 5 .4625], 
what is a reasonable critical z value to detect effects of this 
size for predictor X2 with a two-tailed z test and balanced 
α and β error risks (i.e., q 5 β/α 5 1)? We set “X distribu-
tion” 5 normal, “X parm m” 5 0, and “X parm σ” 5 1. If 
all other input parameters remain unchanged, a compro-
mise power analysis results in “Critical z” 5 2.146971, 
corresponding to α 5 β 5 .031796. Thus, different de-
cision criteria and error probabilities may be reasonable 
for different predictors in the same regression model, pro-
vided we have reason to expect differences in effect sizes 
under H1.

5.2. Poisson Regression
A Poisson regression model describes the relationship 

between a Poisson-distributed dependent variable (i.e., the 
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